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Cameron Buckner (Houston)
Moderate empiricism § machine learning S

Positions in the History of Western Philosophy
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What the History of Philosophy Can Teach Us about the
Future of Artificial Intelligence. Oxford University Press.
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Rosa Cao (Stanford)
Are apparently successtul BNN models also truly explanatory?

Do models have understanding?¢ Do their words have meaning? Are they (relevantly) like us? Do they have

representations with the same functional role (e.g., inner models structuring behavior)?

(

What aspects of your target
does the model capture?

To what degree?

Under what assumption?
How robust is your model?
How well does it generalize?
How efficient is it¢

patterns of activity

p—

* should be causally involved in behavior
* must be manipulable at the representational level
» ascriptions are relative to a probe (& explanatory purpose)

EXPLANATORY (2) MODEL

ML Researchers

Output
Probabilities

Positional Positional
Encoding e Encoding

Outputs
(shifted right)

ML Researchers
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Flntamn Mallory (Oslo)
O Teleosemantics for Neural
wWord Embeddings

FYE

In conclusion.... these are the same thing

Jacqueline Havding (Stanford)

Summary

To assess whether component hrepresents a property Z:
* (Information) Train a successful probe gz : h(D) — P(2).
* (Use) Apply an ablate intervention to h(s) for s € D. See if system's
performance degrades.

* (Misrepresentation) Apply a correct intervention to activation h(s) for s € D.
See if system’s performance improves.

Pushmi - Pullyu Representation

Hidden layer Output layer

Figure 1: A simple CBOW model with only one word in the context

Rong, X., 2014. word2vec parameter learning explained. arXiv Millikan, R. G. (2005). Language: A biological model. Oxford
preprint arXiv:1411.2738. (slight modification) University Press

Philosophy of Deep Learning Conference Representation in NLP March 25th, 2023
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1.  vocabulary alignment using point
set registration algorithms
y, 2. co-reference of ‘line’ and ‘lined’
3. translate

BUT works only if spaces are very

Key idea: If LM and CV models were

aligned in the same way, we could
translate and do VQA.

Input image classes

Vision
Encoder

ID: n02834778

Input words & sentences

bike bicycle cycle wheel
Bike riders should follow the directional signs on ...
Bicycle theft is a crime involving theft of a bicycle.

Cell division occurs as part of a larger cell cycle.

It had a spoked steering wheel and bucket seats.
All had the required height adjustable steering wheel.
The throttle was controlled with a lever on the steer...

Image embeddings

[

Word embeddings

Source Space

n02834778

Target Space

MAE_huge

Aligned Space

wheel
283477
bike ~N02834778

bicycle cycle

* BERT models, A GPT2 models, « OPT models; Dotted line: P@100, dashed line: P@10, solid line: P@1.

Is this knowledge?

To check, we ran similar experiments
mapping BigGraph embeddings into

LM vector spaces - obtaining very

\ similar results. This suggests the
convergence is not explained by

Control experiment: Could it be that
LMs and VMs are contaminated by

inductive bias or ImageNet artefacts?
Language model

{BERT-Tiny}
{BERT-Mini}
{BERt-Small}
{BERt-Medium}
{BERT-Base}
{BERT-Large}

contamination or ImageNet artefacts.

P@1
1.05263
2.10526
2.63158
1.57895
0.0
2.10526

P@10

10.52632
11.05263
14.73684
13.15789
17.89474
19.47368

P@100

35.26316
38.94737
41.57895
46.84211
53.68421
55.05263

Models

Anders Sgoaard (Copenhagen)

A response to Bender & Koller (2020). Climbing towards NLU.

SegFormer-B0

10° 10° 10"
Number of parameters (log)

P@100

100.8 |
178.4
319.6

100.8 |
178.4
319.6

585
46.4
373

54.6
52.6
377

64.3
56.3
39.1

1784 |

MAEnuce

Polysemy Pairs | P@100

60.2
474
36.5

55.5
527
40.1

65.17
56.9
415

SegFormer-B3

Number of parameter

ResNet152
P@100

61.7
49.3
39.7

58.5
544
425

68.8
59.2
44.7

Sogaard (2023): ‘Grounding the Vector Space of an Octopus’. Minds and Machines.
Li et al. (2023): ‘Implications of the Convergence of Language and Vision Model Geometries’. ArXiv.

s (log)
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low
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high

low
medium
high
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60.4
483
28.6

432
49.1
41.1

60.4
56.4
38.6

10°
ResNet152

10°

57.1
495
284

47.6
52.2
423

60.0
59.9
46.8

10t

Number of parameters (log)

MAEyuce
P@100

| SegFormer-B5 SegFormer-B5 ResNet152

P@100 P@100

61.7
52.5
30.7

49.5
54.4
452

100.8 |

68.0
62.4

319.6 |

449




Do deep neural networks have concepts?

EMPIRICAL TEST FORMAL CHARACTERIZATION OF CONCEPTS ppoutt 2021
013, Chund *
nder:& itchell 2022

Odovor

\.\.;,fs’tc,\d"er
De Martino et al. 2023

K Tony Chen, Mitehell Ostrow, HoRyung sung, Cedegao Zhang O/

E ilities
ariabiity
e otimulus Y
Wwith st

Lake & Baroni 2018, Hupkes et al. 2019,
Lewis et al. 2022 S —

The compositional operators and, or, and not correspond to manifold —
intersection, union, and complement

compositional

The relations between concepts is captured by the geometry of the
overall latent space, which includes multiple concept manifolds.

Ei(x) e Conjunction (AND) Disjunction (OR) Negation (NOT)

‘ .bé_ ‘ ) _

Eq(x) + Ex(x) -logsumexp(-Es(x).-Ez(x) -E4(x) + Ea(x)

Some of these properties are incredibly important and of philosophical and
psychological interest, but it is not clear how they might be formalized. @







language models. ... capable of reasoning ... using simple heuristics Plan. P

g P
Ishita Dasgupta (DeepMind) E
Wie et al. (2022). Valmeekam et al. % -' —
Chain of thought (2022). o o8 /
prompting elicits Large Language % l .
\l reasoning in large LLMs are... Models Still Can't /

Humans are...
Predictibility
.. capable of reasoning ... using simple heuristics Thinking slow /

Homo economicus
O Perception as
Baysian inference thinking fast

humans are better at

reasoning in familiar . .
LLMs have prior expectations over language;

Chinchilla

social settings

that's thei int.
(WGSOH TCISk) at’s their poin

i ) Will LMs show the same content effects on
LLM expectations often reflect human beliefs & reasoning as humans?

knowledge.

<
>
<
>
o
s
3
Q
Q
<<

Consistent Violate Nonsense Consistent Violate Nonsense
Relationship to reality

What can we learn from this?

These effects can emerge from a monolithic model, trained on a simple task
objective — without explicit dual systems or social reasoning mechanisms.
How this emerges in LMs is worth understanding, to understand it in humans.
Developing new levels of analysis:

similar “behavior” < similar “representations” < similar “learning” @

Cognitive science has vocabulary and empirical methodology to yield insights

for current Al — or at least its applications.

A new comparative psychology?




Niko Kriegeskorte (Columbia)
DISRUPTED BY TWO REVOLUTIONS

Just data fitting!

\:
Neural network models as mechanistic explanations
N N
too stmple! too complex!

(not fatthful to bi

Conclusions

. . g . . Model comparison
. Neural network models promise mechanistic explanations of brain- P

information processing, but theoretical progress requires new
methodology for comparing high-parametric neural network models.

Model-comparative inference that generalizes across experimental
conditions and subjects enables progress toward better models and

theories.
Schiitt et al. pp2021

RDM prediction accuracy
[mean of Pearson r]

, . Optimized experiments using controversial stimuli provide severe
Rkl s tests of out-of-distribution generalization for different deep net models. RSA3 apen-soucs Python Toalox ncolaboraton iththe labsof Diedrichsen, Mur,and Chrest
Golan et al. 2020

s )
Christopher

nten
sentence Baldassano
space

“That is the narrativé the week
we have been sold” you have been dying”

“This is the lie
you have been sold”




% Tal Linzen (NYM/ Gooole Al)
o) (L awgtmm@, can LLMSs teach us about human Language acquisition?

@ Modern neural networks are stronger learners than the cognitive
models we had in the past—we can just unleash them on a
corpus, without simplifying or annotating it

Predictions from larger language
models are increasingly non-human-like

Natural Stories SPR
better fit to

human reading 6501
times

= Which assumptions lead to the successful acquisition of linguistic
generalization?
- Do we need Universal Grammar?

258 200 242 ha  is  pem
Perplexity

less accurate
word predictions

(Oh & Schuler, 2022)

—

rate
word predictions

- Do we need perceptual grounding?
- What representations emerge to support the network’s behavior?

L e

O But we need to be able to control the assumptions: commercial

“large” language models are increasingly unhelpful here

a useful infrastructure

\ IF MODELS ARE TRAINED ON HUMAN-APPROPRIATE DATA
* e.g. resource-limited in human-like ways
* not the ones corporations find attractive @

EXPERIMENTS WITH COMMERCIAL LLMS ARE NOT RELEVANT




Robert Long (Center for Al Satety)
Why cogunitive sclence s not helful for Al

VALUABLE INSIGHTS ABOUT THE COMPUTATIONAL BASIS OF HUMAN (AND ANIMAL) INTELLIGENCE
* reverse engineering

* transferrable insights from neuroscience, philosophy, etc.

* cognitive science: plausible & appealing but false in practice
* Al systems don’t need those solutions ... especially not at scale

1) The computational basis of human intelligence is far more complex than
our theories in cognitive science have captured

There are principled reasons to expect it to be false > Leads to brittle "solutions’ when applied
1) We are not good at cognitive science 2) Human-like solutions are not optimal for Al systems

at scale
(and this makes me sad)

2) Al systems have little use for built-in human-like solutions, especially o Human-like solutions are optimal given human:

m Computational capacity

m Data

m Timescale of learning

Imposing human-like constraints - like all constraints - predictably
becomes unhelpful with scale (Sutton’s “Bitter Lesson”

I simply exhibit
the behaviors that
were engineered
into my programming
by my creators




Neural
plausibility
Egner 2009, Nat Neuro
e Augment LLM with dumb ACC/PFC-like model
1. DL needs PFC: neuro, Al,
behavior dims

1
{

e Train dumb-PFC on past interactions, measure p(re-prompt),

lda Momennejad (Microsoft Research)
LLMs need a [dumb] PFC

/ identify when it's time to switch from fast to slow processing 2. Transformer as HPC: neuro, Al
T (thinking about thinking, system 2, cog control, etc)
Behavioricog o e.g., GPT4 nearperfect at identifying a response as 3. LLis sepmant narratiye _
O P toxic, but can't integrate this knowledge to not produce Strltcture: Al human-iike behavior
toxic content, dumb-PFC can reprompt & help /

e Dumb-PFC can also decide when to

o consult the internet or ground truth Il :

= -9
Superhuman

Engineering

CS/benchmark chess - i , .
s o recruit different skills/“personas”/attractor basins,

e.g. to respond to the same question & take the best

Momennejad, I. (2023). A rubric for human-like i
agents and NeuroAl. Philosophical Transactions
of the Royal Society B, 378(1869), 20210446.

e There can be different species of dumb-PFC
(e.g., for different applications, Xbox vs. Bing vs. office/365 etc)
Or multi-agent versions

use the I‘UbI‘IC fOI‘ nonblnqry eVCI|UC11'IOI‘IS “executive functions such as planning (Duncan, 1986), abstract reasoning (Donoso et al., 2014),

rule-learning (Wallis et al., 2001), and controlled or deliberate processing (Miller & Cohen, 2001)”

PFC slows down for top-down monitoring & control: Memory & sequential planning (long-horizon),
metacognition, orchestrating which regions should team up, increase communication, & or be more 1
quiet = adapting the graph of functional connectivity to context & goals

\ PFC /8
* to coordinate other processes & representations
* like in a multiagent constellation adaptive to task/ goals

* control as conductor of an orchestra t»“: ;. Y ha

¥
(Y




representations in DNNs V\/Bl/tVﬂ L W@tWO VIQ,S

3. humans: flexible reliance on both

Learned association
weights.

Nicholas sShea (London)
The lmportance of Logieal reasoning and its emergence bn deep

/f\v& syt 2. two types of representational transition

"\ (content-specific & non-content-specific)

< f\ﬁ’ ﬁ( & Exemplar nodes
O L= -

content-specific non-content-specific

Capacity for non-content-specific transitions is

Learned attention

- a fa strengths. useful for:
O O Stimulus dimension . .
e, nodes. (a) Inferences on representations far outside
1 Representing trained experience
y (b) Inferences from stored explicit memories

* Implicitly, in a disposition to make transitions
between representations:

4. hybrids in Al

* Explicitly:
The Space Needle is in Seattle

Distinguish:

. Potential hybrids
(a) Reasoning at output ) _
(b) Internal non-content-specific computations * LLM + reasoning engine (‘tool use’)

O BE REALIST ABOUT REPRESENTATIONS ! — (b) is unlikely: * LLM in two modes, via prompting

(i) Patterns of errors, esp. out-of-distribution E.g. ‘Selection-inference’:

(ii) What models do when trained specifically on .
logic: e.g. Traylor, Feiman & Pavlick (2021, ACL) Cresswell, Shanahan & Higgins (2023, ICLR)

Non-content-specific transitions are useful for Limitations:
inferences on: * Computationally-demanding at decision time

 Stored explicit memories

* Frame problem / retrieval by relevance

/O * Representations generated by general- are overcome by content-specific processing
purpose compositionality dispositions




Principle of compositionality

"The meaning of a whole is a function of the meanings of the

parts and of the way they are syntactically combined”

(Partee 1995)

\

@ DILEMMA

Human language and cognition are (largely) compositional

compositional behavior

* If ANNs lack compositional representations with constituent
structure, they cannot behave compositionally

* If ANNs have compositional representations with constituent
structure, they merely implement a classical architecture

OUTPUT

A maton a cat.

Man bites dog.
Who needs urgent care? The dog

l compositional representations

“Many current learning approaches are implicitly behaviorist in
tint, ignoring the fact that the brain operates over
representations that are organized into structures (not lists)
based on compositional rules.” (Marcus & Murphy 2022)

“It remains open that DNNs might mimic the performance of biological
perception and cognition across a wide variety of domains and tasks by
implementing core features of LoTs.” (Quilty-Dunn et al. 2022)

"Do apparent successes of neural networks owe in part to implementing LoT-
like structures, and if so, exactly what symbols and rules do they implement?”

STRUCTURE (Mandelbaum et al. 2022)

COMBINATION

Compositional representations

“"Compositionality is the classic idea that new representations can
be constructed through the combination of primitive elements”
(Lake et al. 2016)

RAPHAEL MILLIERE (COLUMBIA)
COMPOSITIONALITY [N DEEP NEURAL NETWORKS

A third way

Conclusions

* DNNs can be given the resources to behave compositionally if
they have the right features (biases, objective, size, data...)

* Functional compositionality in DNNs does not involve discrete
constituent structure

* It provides a mechanism that approximates variable binding
to varying degrees of precision

* Many open questions:

* Architecture: is attention really special?
* Augmentations: TPRs, parsers, explicit memory, logic engine...
+ Cognitive science: similar mechanisms in human cognition?




1.) What kind of understanding do we seek? Does control demonstrate Unders’randlng?
- P an: Operationalize it
Computation [l vhy (problem) expenmenta”y_
Algorithm [ what (rules) validated understanding”

* Many neuroscientists

aim for something like
n “algorithmic” level of
undel’Standlng Implementation 3 how (physical)

Grace Lindsay (NYUW)
Developing neural systems understanding

aCCOFdIng to Marr’s The application of an analysis method should result
fr amewo I’k in a simplified understanding of the system. That 2008
understanding should be able to generate ideas for 000000
new experiments. Those experiments should verify
the simplified model by demonstrating control over cooco000
the behavior of the system 000000

Marr (1982) neurocritic

* High dimensional
Hierarchical/recurrent
Nonlinear
Distributed/Modular
Task-optimized

Development of ‘Neural Systems
Understanding’

Information processing system

The development of this field does not:
Require any specific claims about ANNs as models of the brain

Assume that all neural systems should be submitted to the same tools

Mean that all questions in neuroscience and Al can be solved with these
methods




l Speakers

* Anna lvanova (MIT)
Q *  Nuhu Osman Attah (Pittsburgh)

Patrick Butlin (Oxford)
Philippe Verreault-Julien (Eindhoven)




Fallacy #1

good at lan;

Fallacy #2

bad at I?nguage
bad at thought

formal reasoning

Arithmetic (few-shot)
100
—e— Two Digit Addition

Two Digit Subtraction
Three Digit Addition
—e— Three Digit Subtraction
—e— Four Digit Addition
—e— Four Digit Subtraction
-+— Five Digit Addition
—e— Five Digit Subtraction
Two Digit Multiplication
Single Digit Three Ops

Accuracy
8

'S
=)

( > . 08B 1.3B 26B 678 13B
Parameters in LM (Billions)

23
Model O

crr2 [EEN
Human

davinci (175B) 0.84
GPT-NeoX (20B) 0.839
TNLGv2 (6.7B)  0.835
GPT-J (6B) 0.834

IRELM

Brown et al (2020)

| 4
Anna ivanova (MIT) f o
Formal § functlonal competence in LLMs | /'é\

formal competences functional competences ~ -

core languag =
knowledge

world knowledge

Language models learn a lot about the world. However, this
knowledge is brittle, biased and incomplete.

The capital of Texas is Austin.
Boston? The capital of Texas is Boston.

Kassner & Schiitze (2020) "

* Formal competence = knowledge of linguistic rules and patterns

* Functional competence = non-language-specific skills required for
real-life language use

* This distinction (grounded in neuroscience) helps clarify the discourse
around LLMs & suggests a way to build better language models.



Nuhu Osman Attah (Pittsburoh)

Why think LLMs do not have any communicative intentions (Cl) at all2 “It doesn’t matter what internal mechanisms it uses, a sequence
predictor is not, in itself, the kind of thing that could, even in
* Bender et al. 2021: because they don’t have any mechanism to accommodate principle, have communicative intent, and simply embedding it in

a dialogue management system will not help.” (Shanahan 2022).

communicative intention nor are they trained to take such intentions into consideration

plausible mechanisms in LLMs

In each case, the belief state representation is meant to
estimate which of a set of possible effects a user intends to
trigger.

Evidence suggests that attribution of intention (including self-

attribution) is dependent on linguistic mastery — which suggests * This representation is then used to guide a natural language
: : : e ti dule to take acti te with thi

the semantics of intentional terms are significant for the BEiRSNATE INRIBHILS 1L JAXeraichlons Sellinenztiaks W e

model of the user’s intentions.
ontogeny of communicative intention (Lohmann & Tomasello
* This last point is important because everything I’ve said so far
2003). iy > : ;
collapses the recognition/possession (of intention)
distinction.

Moreover, the fine-tuning training phase of some Transformer , -
: : ; Classical NLP systems would lend themselves positively to such a
LMs includes a dialogic component™* (e.g. RLHF). comparison.

Until recent work, however, transformer-based LMs, might not
have been thought to. It’s an empirical matter whether they do.

However, it is known that appropriate probes disentangle
representational features in transformers which recapitulate the
classic NLP pipeline, complete with distinct (hierarchical)
representational sensitivity to parts of speech, semantic roles, and
coreference (Tenney, Das, & Pavlick 2019, see also Clark et al.
. . . 2019].
*If ClI assumes Strong Griceanism, it won’t get off the )
ground for all the well known reasons. (So [out of our But if that is the case then the argumentative strategy of running

. : : ’ . ’ through the system and trying to figure out intuitively where the
fhetOrICal magnanlm’ty] let’s assume it doesn t) representations of intentions might be encoded in it is dubious.

*Even if it attenuates its Gricean assumptions, it would
still not be very convincing because...
* Empirical parity.
* There might be plausible mechanisms in LMs after all.
* There might be more work for SL than Cl Arguments suspect™.




human environment

NOW: function argument

Understanding an utterance involves forming a representation with the same content

Lack of perception of human environment
does not prevent understanding

function argument
Content depends on function

d oes not Work - A representation with the content volcanoes erupt has the function of carrying the
information that volcanoes erupt

But lack of functions or tasks concerning
this environment does

Patrick Butlin (Oxford)
con LLMsS understand utterances?
\] P revious claims: Claim: Understanding human utterances requires functions or tasks concerning the

Butlin, P. (2021). Sharing Our Concepts with Machines.

A system will only use information concerning the human environment if it has a
function or task concerning that environment

O

Objection 1: Fine-tuning for new tasks
Objection 2: Usefulness of information about the world

- Suppose a LM is fine-tuned to give correct answers to factual questions
- This is not a purely linguistic task - Interpretability research sometimes posits representations with worldly content

- It may use information about the human environment obtainable from its training datajiili-_Hard to imagine how LMs produce some outputs without world knowledge

Objections 1 + 2: Discussion

Pretrained LM Fine-tuned LM
_ What is the capital of Estonia?

Task Provide a likely continuation of the Answer the question correctly
text
‘What is the capital of Estonia? Tallinn is the capital of Estonia
Tallinn’ is a relatively common string

Two problems with this:
- The two facts are not independent, so features will carry both pieces of information

- Either piece of information could be used to perform either task

/) DETAILED ANALYSIS IS NEEDED TO CLARIFY REPRESENTATIONAL CONTENT IN LLMS



1. understanding comes in degrees

2. grasping matters

3. inferences aren’t the end of the story

4. understanding may not be compatible with lack of justification or falsehood

Philippe Verreault-julien (Elndhoven)
Four Lessons LLMS teach us about understanding?

Threshold for understanding Abilities philosophers focus Counterfactual reasoning (e.g.
\ on are mostly inferential Grimm 2006)

, o . ) LLMs are good (not perfect!) Representation manipulation
Proto-understanding | Minimal understanding > Improved > Ideal understanding St inferences (Wilkenfeld 2013)

Cognitive control (Hills 2016)

1. What are the constitutive abilities of grasping?

2. Is grasping phenomenal or inferential (Bourget 2017)?

Philosophers of understanding mostly:

a. Discuss whether some particular abilities are necessary for understanding
b. Endorse the inferential account

Grasping and its relationship to understanding may be crucial to sufficient (Dellsen 2017)
establish whether LLMs understand

Is non-factive: falsehood may afford
understanding (Elgin 2017)
Doesn't require justification: grasp of truth is




